Tag Archives: BRIEF

Adding rotation invariance to the BRIEF descriptor

In this post I will explain how to add a simple rotation invariance mechanism to the BRIEF[1] descriptor, I will present evaluation results showing the rotation invariant BRIEF significantly outperforms regular BRIEF where visual geometric changes are present and finally I will post a C++ implementation integrated into OpenCV3.

Just as a reminder, we had a general post on local image descriptors, an introductory post to binary descriptors and a post presenting the BRIEF descriptor. We also had posts on other binary descriptors:  ORB[2], BRISK[3] and FREAK[4].

We’ll start by a visual example, displaying the correct matches between a pair of images of the same scene, taken from different angles – once with the original version of BRIEF (first image pair) and one with the proposed rotation invariant version of BRIEF (second image pair):

Correct matches when using the BRIEF descriptor

Correct matches when using the BRIEF descriptor

Correct matches when using the rotation invariant BRIEF descriptor

Correct matches when using the rotation invariant BRIEF descriptor

It can be seen that there are much more correct matches when using the proposed rotation invariant of the BRIEF descriptor.

Continue reading

Advertisements

A tutorial on binary descriptors – part 2 – The BRIEF descriptor

Following the previous posts that provided both an introduction to patch descriptors in general and specifically to binary descriptors, it’s time to talk about the individual binary descriptors in more depth. This post will talk about the BRIEF[1] descriptor and the following post will talk about ORB[2], BRISK[3] and FREAK[4].

Continue reading

Tutorial on Binary Descriptors – part 1

Why Binary Descriptors?

Following the previous post on descriptors, we’re now familiar with histogram of gradients (HOG) based patch descriptors. SIFT[1], SURF[2] and GLOH[3] have been around since 1999 and been used successfully in various applications, including image alignment, 3D reconstruction and object recognition. On the practicle side, OpenCV includes implementations of SIFT and SURF and Matlab packages are also available (check vlfeat for SIFT and extractFeatures in Matlab computer vision toolbox for SURF).

BRISK descriptor - sampling pairs

BRISK descriptor – sampling pairs

So, if there no question about SIFT and SURF performance, why not use them in every application?

Continue reading